An Overview of NOAA's National Weather Service Burn Hydrology Efforts

Results of An Informal Survey

NOAA NWS Western Region Hydrology Science Meeting
October 4-6, 2005
Park City, Utah

Unique Geo-Hazard Forecasting Component

ABSTRACT

• A diverse compliment of burn hydrology efforts has been realized nationwide throughout the NWS in response to the unique hydrological and geo-hazard forecasting concerns presented by these impacted areas. In general these techniques have been developed ad hoc and in isolation from each other.

A survey of offices has been conducted by the authors; and an overview of known current and planned techniques utilized by the NWS is provided.

RESPONDING OFFICES

- Colorado Basin RFC
- WFO Tucson, AZ
- WFO Rapid City, SD
- California-Nevada RFC
- WFO Sacramento,
 CA
- Missouri Basin RFC

- WFO San Diego, CA
- WFO Salt Lake City, UT
- WFO Boise, ID
- WFO Missoula, MT
- WFO Los Angles / Oxnard, CA
- WFO Spokane, WA

COOPERATING AGENCIES

- USDA Forest Service
- U.S. Geological Survey
- Other U.S. Department of Interior (NPS, BLM)
- Utah Geologic Survey
- Arizona Geologic Survey
- County Emergency Managers

FIRE SIZE

Small to Medium

- 1. Flash Floods
- 2. Landslides
- 3. Debris Flows
- 4. Hyperconcentrated Flows

Medium to Large

- 1. Flash Floods
- 2. Landslides
- 3. Debris Flows
- 4. Hyperconcentrated Flows
- 5. River Forecasting
- 6. Water Supply Forecasting

BURN SEVERITY

Low

No Additional Risk

Moderate to High

Increased Risk

OTHER FACTORS

Where it happens

- Geology
- Fluvial Geomorphology
- Basin Topography
- Climate

What happens next

- Rainfall Intensity
- Rainfall Duration
- Rapid Snowmelt
- Timing Watershed Recovery

Estimated Peak Flows at Cibecue Ck Near Chrysotile CBQA3 (old gage)

For Various Mean Areal Precipitation Amounts (Computed from NWSRFS - Adapted to Burn Area)

TECHNIQUES

- Dynamic Event Layers for CBRFC GIS Flash Flood Potential - Greg Smith
- NWSRFS Segment Definition Modification (e.g., reduce upper SMA tank up to 50%; added a little more impervious area) Terri Hogue
- NOAA-USGS Debris Flow Warning System - Pedro Restrepo

- Rapid-Deployment Data-Collection Networks
- Rainulator Experiment (Boise)
- Burn Specific
 Fixed (Soil Moisture
 Independent)
 NWSRFS FFG Values
- Different Thresholds for Ash Covered (1st Year), Post Ash (1st Year), and 2nd Year

Boise Foothills Flash Flood Guidance

— Warning Line

- WFO Sacramento Debris Flow Guidance (Thresholds, Intensities, and Weather Scenarios)
- Boise Foothills Flash Flood Plan
- Burn Area Emergency Rehabilitation (BAER) Team Involvement
- Community Awareness / Outreach

Post Burn Studies / Field Trips

- 1. Rainfall Events And Their Effect On Severely Burned Areas Of Western Montana Following The Forest Fires Of 2000, Ray Nickless, Eric Boldt and Craig Neesvig, WFO Missoula, MT
- 2. Analysis of Rainfall Triggered Fire-Related Debris Flows at Santaquin, Utah, Brian McInerney, WFO Salt Lake City, UT and Richard Giraud, Utah Geological Survey
- 3. Activities of the CBRFC: Support of the Burn Area in Arizona, Dave Brandon, CBRFC (Presentation for WFO-FLG, White Mountain Apache Tribe and Others, August 21, 2002)
- 4. Effects of Wildfire in the Mountainous Terrain of Southeastern Arizona: Post Burn Hydrologic Response in Nine Watersheds, Mike Schaffner, WFO Tucson, AZ and William B. Reed, CBRFC

Basin Response
Ratio for 5-Year Events (Post-Burn vs Pre-Burn Flow)

- Analyzed the Effects of High Intensity-Short Duration Rains Vs. Longer Duration Rains on the Burn Areas -Sue Cannon
- Analyzed Increased Runoff from Burn Areas for Various Return Intervals
- For Flash Floods / Water Supply Can Develop Empirical Equations and Regional Regressions...

- Can Also Develop Hydro-Physiographic Discharge Relationships for Ungaged Watersheds
- For Debris-Flow Hazard Analyses Can Be Inferential, Statistical, Process-Based
- NWS WR Hydrology Program
 Manager's Guide. Chapter 16: Post
 Wildfire Operational Hydrology (9/2005)

NEEDS

- National Data Repository
- National Cohesive Program
- Reserved Stock of Gages (including stream) for Rapid Deployment (in addition to the 2,200 RAWS stations)
- Additional Rainulator Experiments?
- Simplified Fluvial Geomorphologic Classification System?

Contributors

- Bill Reed, CBRFC
- Dave Brandon, CBRFC
- Greg Smith, CBRFC
- Mike Schaffner, WFO Tucson
- Teresa Murphy, WFO Rapid City
- Eric Strem, CNRFC
- Elizabeth Morse, WFO Sacramento
- Cindy Matthews, WFO Sacramento
- Bob Cox, MBRFC (since retired)
- Sue Cannon, USGS
- Jim Purpura, WFO San Diego
- Brian McInerney, WFO Salt lake City
- John Jannuzzi, WFO Boise
- Jay Breidenbach, WFO Boise
- Ray Nickless, WFO Missoula
- Jayme Laber, WFO Los Angles/Oxnard
- Charles Ross, WFO Spokane
- Michelle Schmidt, WRH

- Kevin Werner, WRH
- Andy Edman, WRH
- Melissa Smith, WRH
- Terry A Kaplan-Henry, USDA Forest Service

- 8:50 Pedro Restrepo (NWS/OHD) The joint NOAA/NWS USGS Debris Flow Warning System
- 9:10 Sue Cannon (USGS) Post-wildfire debris flows from a Geologic perspective and Rainfall Intensity-Duration Thresholds as the Basis for Post-Wildfire Flash Flood and Debris Flow Warnings
- 9:30 Jay Breidenbach (NWS/WFO Boise): Science issues associated with the Hot Creek Burn Scar in Central Idaho a case study.
- 9:50 Terri Hogue (UCLA): Improving the understanding and prediction of post-fire hydrology
- 10:10 Discussion of Session 4: Where can research most help NWS operations? Are there particular areas where collaboration would most benefit both?